Two New Sesquiterpenes from Euonymus phellomana Loes.

Hong WANG, Xuan TIAN*, Li YANG, Yao Zu CHEN
National laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new β-dihydroagarofuran sesquiterpenes were isolated from Euonymus phellomana Loes.and their structures were established on the basis of spectral analysis.

Keywords: Euonymus phellomana Loes., β-dihydroagarofuran, sesquiterpenes.

Two new β-dihydroagarofuran sesquiterpene polyol esters have been isolated from Euonymus phellomana Loes. growing in Wen county, Gansu Province of China.

Compound 1, white needle crystals, mp: $154-156^{\circ} \mathrm{C}$, analyzed for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{13}$ by FABMS ($\mathrm{m} / \mathrm{z}: \quad 623, \mathrm{M}+1$) and EIMS showed peaks due to the loss of acetic acid, β-furoic acid and α-methylbutanoic acid. IR showed ester carbonyl at $1745 \mathrm{~cm}^{-1}$ and hydroxyl at $3420 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectrum revealed the presence of three acetoxy, one (β-)furancarboxy and one (α-methyl)butanoyl. Considering the other NMR data (Table 1), it is identified as β-dihydroagarofuran sesquiterpene substituted with five ester groups initially.

COLOC showed such cross peaks: $\delta 161.8(\mathrm{Fu}-\mathrm{CO} 2-) / \delta 5.22(\mathrm{H}-9) ; \quad \delta 170.2$ $(\mathrm{Ac}-\mathrm{CO} 2-) / \delta 5.58(\mathrm{H}-1) ; \quad \delta 170.5(\mathrm{Ac}-\mathrm{CO} 2-) / \delta 5.47(\mathrm{H}-2) ; \quad \delta 169.4(\mathrm{Ac}-\mathrm{CO} 2-) / \delta 6.11(\mathrm{H}-6) ;$ $\delta 174.4$ (MeBu-CO2-)/ $\delta 4.99,4.41(\mathrm{H}-15 \mathrm{a}, \mathrm{b})$. In NOESY there are correlation between $\mathrm{H}-1, \mathrm{H}-2 / \mathrm{H}-3 \mathrm{ax}(\mathrm{J} 1,2=3.4)$, showing $\mathrm{H}-1 \mathrm{ax}, \mathrm{H}-2 \mathrm{eq} ; \mathrm{H}-6: \delta 6.11$ (s) indicated angle of $7 \alpha, 6$ should be $90^{\circ} 2$. Cross signals of $\mathrm{H}-1 \mathrm{ax}$ and $\delta 8.01,6.72(-\mathrm{OFu})$ determined β substitued ester group at C-9. Thus, it is $1 \alpha, 2 \alpha$, 6β-triacetoxy- 4β-hydroxy- 9β-(β-)furancarboxy-15-(α-methyl) butyroyloxy- β-dihydroagarofuran.

1

2

Compound 2, white needle crystals, mp: 170-172 ${ }^{\circ} \mathrm{C}$. FABMS(m/z: 633, M+1) gave C 33 H 44 O 12 . It was spectroscopically similar to $\mathbf{1}$. NMR revealed the presence
of functional groups and $1 \alpha, 2 \alpha, 6 \beta, 9 \beta, 15$-quinquesterified- β-dihydroagarofuran parent. Close comparison of NMR spectra of them revealed the benzoxy not furoylate at C-9 of 2(Table 1). COLOC gave the positions of three acetate, one benzoxy and one isobutyrate, respectively. So, 2 is $1 \alpha, 2 \alpha$, 6β-triacetoxy- 4β-hydroxy- 9β-benzoyloxy-15-(α-methyl) butyroyloxy- β-dihydroagarofuran.

Table 1. ${ }^{1} \mathrm{HNMR},{ }^{13} \mathrm{CNMR}$ data of $\mathbf{1}^{*}$ and $\mathbf{2}^{*}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{H}\left(\mathrm{J}_{\mathrm{Hz}}\right)$	1	2	$\mathrm{C}(\mathrm{DEPT})$	1	2
1	$5.58 \mathrm{~d}(3.4)$	$5.65 \mathrm{~d}(3.4)$	1	$69.9(\mathrm{C} \mathrm{H})$	$69.9(\mathrm{CH})$
2	$5.47 \mathrm{~d}(3.4)$	$5.51 \mathrm{~d}(3.4)$	2	$68.2(\mathrm{C} \mathrm{H})$	$68.1(\mathrm{CH})$
3	2.02 m	2.20 m	3	$41.9\left(\mathrm{C} \mathrm{H}_{2}\right)$	$41.9\left(\mathrm{CH}_{2}\right)$
		1.99 m	4	$69.7(\mathrm{C})$	$69.7(\mathrm{C})$
			5	$91.1(\mathrm{C})$	$91.1(\mathrm{C})$
6	6.11 s	6.13 s	6	$78.1(\mathrm{CH})$	$78.1(\mathrm{CH})$
7	2.23 m	2.18 m	7	$49.1(\mathrm{CH})$	$49.1(\mathrm{CH})$
8 a	2.57 dd	2.59 m	8	$34.5\left(\mathrm{CH}_{2}\right)$	$34.5\left(\mathrm{CH}_{2}\right)$
8 b	2.53 dd	2.55 m			
9	$5.22 \mathrm{~d}(7.0)$	$5.33 \mathrm{~d}(8.0)$	9	$69.1(\mathrm{CH})$	$69.5(\mathrm{CH})$
				10	$55.0(\mathrm{C})$
			11	$84.5(\mathrm{C})$	$55.1(\mathrm{C})$
			12	$25.0\left(\mathrm{CH}_{3}\right)$	$25.6(\mathrm{C})$
12	1.47 s	1.48 s	13	$25.5\left(\mathrm{CH}_{3}\right)$	$25.0\left(\mathrm{CH}_{3}\right)$
13	1.47 s	1.49 s	14	$29.3\left(\mathrm{CH}_{3}\right)$	$29.3\left(\mathrm{CH}_{3}\right)$
14	1.55 s	1.56 s	$65.4\left(\mathrm{CH}_{2}\right)$	$65.4\left(\mathrm{CH}_{2}\right)$	
15 a	$4.99 \mathrm{~d}(13.0)$	$5.00 \mathrm{~d}(13.0)$	15		
15 b	$4.41 \mathrm{~d}(13.0)$	$4.44 \mathrm{~d}(13.0)$			

*NMR revealed the same presence of three AcO of $\mathbf{1}$ and $\mathbf{2}[8 \mathrm{H}: 2.09(3 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}$, s), $2.27(3 \mathrm{H}, \mathrm{s}) ; \delta \mathrm{C}: 21.1,21.2,21.5,169.4,170.2,170.5] ; \quad(\alpha-\mathrm{Me}) \mathrm{Bu}(\mathbf{1})[\delta \mathrm{H}: 0.68(3 \mathrm{H}, \mathrm{t}), 0.88(3 \mathrm{H}, \mathrm{d})$; $1.26(2 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{m}) ; \delta \mathrm{C}: 11.2,15.6,25.3,40.6,174.4] ;(\alpha-\mathrm{Me}) \mathrm{Bu}(\mathbf{2})[\delta \mathrm{H}: 0.54(3 \mathrm{H}, \mathrm{t})$, $0.77(3 \mathrm{H}, \mathrm{d}) ; 0.91(1 \mathrm{H}, \mathrm{m}), 1.15(1 \mathrm{H}, \mathrm{m}), 1.87(1 \mathrm{H}, \mathrm{m}) ; \delta \mathrm{C}: 11.1,15.6,25.3,40.6,174.2]$; $\mathrm{FuO}(\mathbf{1})[\delta \mathrm{H}: 6.72(1 \mathrm{H}, \mathrm{d}), 7.45(1 \mathrm{H}, \mathrm{d}), 8.01(1 \mathrm{H}, \mathrm{s}) ; \delta \mathrm{C}: 109.9,118.7,143.8,148.9,161.8] ; \quad \mathrm{BzO}(2)$ [$\delta \mathrm{H}: 7.58(1 \mathrm{H}, \mathrm{t}), 7.45(2 \mathrm{H}, \mathrm{t}), 8.03(2 \mathrm{H}, \mathrm{d}) ; 8 \mathrm{C}: 128.3,129.1,130.2,133.5,165.2]$.

Acknowledgments

We would like to thank Prof. Ji-zhou Sun of Department Biology, Lanzhou University for the identification of the plant.

References

1. R. Bruning and H. Wagner, Phytochemistry, 1978, 17 (11), 1821.
2. C. R. Smith, R. G. Millcr, et al, J. Org. Chem., 1976, 41 (20), 3264.

Received 1 November 1999
Revised 10 January 2000

