Two New Sesquiterpenes from Euonymus phellomana Loes.

Hong WANG, Xuan TIAN*, Li YANG, Yao Zu CHEN

National laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new β -dihydroagarofuran sesquiterpenes were isolated from *Euonymus phellomana Loes*. and their structures were established on the basis of spectral analysis.

Keywords: *Euonymus phellomana Loes.*, β-dihydroagarofuran, sesquiterpenes.

Two new β -dihydroagarofuran sesquiterpene polyol esters have been isolated from *Euonymus phellomana Loes*. growing in Wen county, Gansu Province of China.

Compound 1, white needle crystals, mp: $154-156^{\circ}$ C, analyzed for $C_{31}H_{42}O_{13}$ by FABMS (m/z: 623, M+1) and EIMS showed peaks due to the loss of acetic acid, β -furoic acid and α -methylbutanoic acid. IR showed ester carbonyl at 1745 cm⁻¹ and hydroxyl at 3420cm⁻¹. The ¹HNMR and ¹³CNMR spectrum revealed the presence of three acetoxy, one (β -)furancarboxy and one (α -methyl)butanoyl. Considering the other NMR data (**Table 1**), it is identified as β -dihydroagarofuran sesquiterpene substituted with five ester groups initially.

COLOC showed such cross peaks: δ 161.8(Fu-CO2-)/ δ 5.22(H-9); $(Ac-CO2-)/\delta5.58(H-1);$ $\delta170.5(Ac-CO2-)/\delta5.47(H-2);$ $\delta169.4(Ac-CO2-)/\delta6.11(H-6);$ δ174.4 (MeBu-CO2-)/δ4.99, 4.41(H-15a,b). In NOESY there are correlation between H-1, H-2 /H-3ax(J1,2=3.4), showing H-1ax, H-2eq; H-6: δ6.11(s) indicated angle of 7α , 6 should be 90°2. Cross signals of H-1ax and $\delta 8.01$, 6.72(-OFu) determined β substitued ester group at C-9. Thus, is 1α, 2α , 6β -triacetoxy- 4β -hydroxy- 9β -(β -)furancarboxy-15-(α -methyl) butyroyloxy-\(\beta\)-dihydroagarofuran.

Compound **2**, white needle crystals, mp: $170\text{-}172^{\circ}\text{C}$. FABMS(m/z: 633, M+1) gave C33H44O12 . It was spectroscopically similar to **1**. NMR revealed the presence

of functional groups and 1α , 2α , 6β , 9β , 15-quinquesterified- β -dihydroagarofuran parent. Close comparison of NMR spectra of them revealed the benzoxy not furoylate at C-9 of **2(Table 1**). COLOC gave the positions of three acetate, one benzoxy and one isobutyrate, respectively. So, **2** is 1α , 2α , 6β -triacetoxy- 4β -hydroxy- 9β -benzoyloxy-15-(α -methyl) butyroyloxy- β -dihydroagarofuran.

Table 1. ¹ HNMR,	¹³ CNMR	data of 1	* and 2 *	(400MHz,	CDCl ₃)

H(J _{Hz})	1	2	C(DEPT)	1	2
1	5.58d(3.4)	5.65d(3.4)	1	69.9(C H)	69.9(CH)
2	5.47d(3.4)	5.51d(3.4)	2	68.2(C H)	68.1(CH)
3	2.02m	2.20m	3	41.9(C H ₂)	41.9(CH ₂)
		1.99m	4	69.7(C)	69.7(C)
			5	91.1(C)	91.1(C)
6	6.11s	6.13s	6	78.1(CH)	78.1(CH)
7	2.23m	2.18m	7	49.1(CH)	49.1(CH)
8a	2.57dd	2.59m	8	34.5(CH ₂)	34.5(CH ₂)
8b	2.53dd	2.55m			
9	5.22d(7.0)	5.33d(8.0)	9	69.1(CH)	69.5(CH)
			10	55.0(C)	55.1(C)
			11	84.5(C)	84.6(C)
12	1.47s	1.48s	12	25.0(CH ₃)	25.0(CH ₃)
13	1.47s	1.49s	13	25.5(CH ₃)	25.7(CH ₃)
14	1.55s	1.56s	14	29.3(CH ₃)	29.3(CH ₃)
15a	4.99d(13.0)	5.00d(13.0)	15	65.4(CH ₂)	65.4(CH ₂)
15b	4.41d(13.0)	4.44d(13.0)			

*NMR revealed the same presence of three AcO of **1** and **2** [δ H: 2.09(3H,s), 2.11(3H, s),2.27(3H,s); δ C:21.1,21.2,21.5,169.4,170.2,170.5]; (α -Me)Bu(**1**) [δ H: 0.68(3H,t), 0.88(3H,d); 1.26(2H, m), 1.98(1H, m); δ C: 11.2, 15.6, 25.3, 40.6, 174.4]; (α -Me)Bu(**2**)[δ H: 0.54(3H,t), 0.77(3H, d); 0.91(1H,m), 1.15(1H,m), 1.87(1H,m); δ C: 11.1, 15.6, 25.3, 40.6, 174.2]; FuO(**1**)[δ H: 6.72(1H,d), 7.45(1H,d), 8.01(1H,s); δ C: 109.9, 118.7, 143.8, 148.9, 161.8]; BzO(**2**) [δ H: 7.58(1H, t), 7.45(2H, t), 8.03(2H, d); δ C: 128.3, 129.1, 130.2, 133.5, 165.2].

Acknowledgments

We would like to thank Prof. Ji-zhou Sun of Department Biology, Lanzhou University for the identification of the plant.

References

- 1. R. Bruning and H. Wagner, *Phytochemistry*, **1978**, *17* (11), 1821.
- 2. C. R. Smith, R. G. Miller, et al, J. Org. Chem., 1976, 41 (20), 3264.

Received 1 November 1999 Revised 10 January 2000